72 research outputs found

    Matrix representation of the time operator

    Full text link
    In quantum mechanics the time operator Θ\Theta satisfies the commutation relation [Θ,H]=i[\Theta,H]=i, and thus it may be thought of as being canonically conjugate to the Hamiltonian HH. The time operator associated with a given Hamiltonian HH is not unique because one can replace Θ\Theta by Θ+Θhom\Theta+ \Theta_{\rm hom}, where Θhom\Theta_{\rm hom} satisfies the homogeneous condition [Θhom,H]=0[\Theta_{\rm hom},H]=0. To study this nonuniqueness the matrix elements of Θ\Theta for the harmonic-oscillator Hamiltonian are calculated in the eigenstate basis. This calculation requires the summation of divergent series, and the summation is accomplished by using zeta-summation techniques. It is shown that by including appropriate homogeneous contributions, the matrix elements of Θ\Theta simplify dramatically. However, it is still not clear whether there is an optimally simple representation of the time operator.Comment: 13 pages, 3 figure

    Unified Solution of the Expected Maximum of a Random Walk and the Discrete Flux to a Spherical Trap

    Full text link
    Two random-walk related problems which have been studied independently in the past, the expected maximum of a random walker in one dimension and the flux to a spherical trap of particles undergoing discrete jumps in three dimensions, are shown to be closely related to each other and are studied using a unified approach as a solution to a Wiener-Hopf problem. For the flux problem, this work shows that a constant c = 0.29795219 which appeared in the context of the boundary extrapolation length, and was previously found only numerically, can be derived explicitly. The same constant enters in higher-order corrections to the expected-maximum asymptotics. As a byproduct, we also prove a new universal result in the context of the flux problem which is an analogue of the Sparre Andersen theorem proved in the context of the random walker's maximum.Comment: Two figs. Accepted for publication, Journal of Statistical Physic

    Record Statistics for Multiple Random Walks

    Full text link
    We study the statistics of the number of records R_{n,N} for N identical and independent symmetric discrete-time random walks of n steps in one dimension, all starting at the origin at step 0. At each time step, each walker jumps by a random length drawn independently from a symmetric and continuous distribution. We consider two cases: (I) when the variance \sigma^2 of the jump distribution is finite and (II) when \sigma^2 is divergent as in the case of L\'evy flights with index 0 < \mu < 2. In both cases we find that the mean record number grows universally as \sim \alpha_N \sqrt{n} for large n, but with a very different behavior of the amplitude \alpha_N for N > 1 in the two cases. We find that for large N, \alpha_N \approx 2 \sqrt{\log N} independently of \sigma^2 in case I. In contrast, in case II, the amplitude approaches to an N-independent constant for large N, \alpha_N \approx 4/\sqrt{\pi}, independently of 0<\mu<2. For finite \sigma^2 we argue, and this is confirmed by our numerical simulations, that the full distribution of (R_{n,N}/\sqrt{n} - 2 \sqrt{\log N}) \sqrt{\log N} converges to a Gumbel law as n \to \infty and N \to \infty. In case II, our numerical simulations indicate that the distribution of R_{n,N}/\sqrt{n} converges, for n \to \infty and N \to \infty, to a universal nontrivial distribution, independently of \mu. We discuss the applications of our results to the study of the record statistics of 366 daily stock prices from the Standard & Poors 500 index.Comment: 25 pages, 8 figure

    Precise Asymptotics for a Random Walker's Maximum

    Full text link
    We consider a discrete time random walk in one dimension. At each time step the walker jumps by a random distance, independent from step to step, drawn from an arbitrary symmetric density function. We show that the expected positive maximum E[M_n] of the walk up to n steps behaves asymptotically for large n as, E[M_n]/\sigma=\sqrt{2n/\pi}+ \gamma +O(n^{-1/2}), where \sigma^2 is the variance of the step lengths. While the leading \sqrt{n} behavior is universal and easy to derive, the leading correction term turns out to be a nontrivial constant \gamma. For the special case of uniform distribution over [-1,1], Coffmann et. al. recently computed \gamma=-0.516068...by exactly enumerating a lengthy double series. Here we present a closed exact formula for \gamma valid for arbitrary symmetric distributions. We also demonstrate how \gamma appears in the thermodynamic limit as the leading behavior of the difference variable E[M_n]-E[|x_n|] where x_n is the position of the walker after n steps. An application of these results to the equilibrium thermodynamics of a Rouse polymer chain is pointed out. We also generalize our results to L\'evy walks.Comment: new references added, typos corrected, published versio

    Asymptotic Expansions for the Conditional Sojourn Time Distribution in the M/M/1M/M/1-PS Queue

    Full text link
    We consider the M/M/1M/M/1 queue with processor sharing. We study the conditional sojourn time distribution, conditioned on the customer's service requirement, in various asymptotic limits. These include large time and/or large service request, and heavy traffic, where the arrival rate is only slightly less than the service rate. The asymptotic formulas relate to, and extend, some results of Morrison \cite{MO} and Flatto \cite{FL}.Comment: 30 pages, 3 figures and 1 tabl

    Universal Order Statistics of Random Walks

    Full text link
    We study analytically the order statistics of a time series generated by the successive positions of a symmetric random walk of n steps with step lengths of finite variance \sigma^2. We show that the statistics of the gap d_{k,n}=M_{k,n} -M_{k+1,n} between the k-th and the (k+1)-th maximum of the time series becomes stationary, i.e, independent of n as n\to \infty and exhibits a rich, universal behavior. The mean stationary gap (in units of \sigma) exhibits a universal algebraic decay for large k, /\sigma\sim 1/\sqrt{2\pi k}, independent of the details of the jump distribution. Moreover, the probability density (pdf) of the stationary gap exhibits scaling, Proba.(d_{k,\infty}=\delta)\simeq (\sqrt{k}/\sigma) P(\delta \sqrt{k}/\sigma), in the scaling regime when \delta\sim \simeq \sigma/\sqrt{2\pi k}. The scaling function P(x) is universal and has an unexpected power law tail, P(x) \sim x^{-4} for large x. For \delta \gg the scaling breaks down and the pdf gets cut-off in a nonuniversal way. Consequently, the moments of the gap exhibit an unusual multi-scaling behavior.Comment: 5 pages, 3 figures. Revised version, typos corrected. Accepted for publication in Physical Review Letter

    Random division of an interval

    Get PDF
    The well-known relation between random division of an interval and the Poisson process is interpreted as a Laplace transformation. With the use of this interpretation a number of (in part known) results is derived very easily

    Asymptotic Expansions for the Sojourn Time Distribution in the M/G/1M/G/1-PS Queue

    Full text link
    We consider the M/G/1M/G/1 queue with a processor sharing server. We study the conditional sojourn time distribution, conditioned on the customer's service requirement, as well as the unconditional distribution, in various asymptotic limits. These include large time and/or large service request, and heavy traffic, where the arrival rate is only slightly less than the service rate. Our results demonstrate the possible tail behaviors of the unconditional distribution, which was previously known in the cases G=MG=M and G=DG=D (where it is purely exponential). We assume that the service density decays at least exponentially fast. We use various methods for the asymptotic expansion of integrals, such as the Laplace and saddle point methods.Comment: 45 page
    • 

    corecore